Physiological and Transcriptional Characterization of Escherichia Coli Strains Lacking Interconversion of Phosphoenolpyruvate and Pyruvate When Glucose and Acetate are Coutilized
نویسندگان
چکیده
Phosphoenolpyruvate (PEP) is a precursor involved in the biosynthesis of aromatics and other valuable compounds in Escherichia coli. The PEP:carbohydrate phosphotransferase system (PTS) is the major glucose transport system and the largest PEP consumer. To increase intracellular PEP availability for aromatics production purposes, mutant strains of E. coli JM101 devoid of the ptsHIcrr operon (PB11 strain) have been previously generated. In this derivative, transport and growth rate on glucose decreased significantly. A laboratory evolved strain derived from PB11 that partially recovered its growth capacity on glucose was named PB12. In the present study, we blocked carbon skeletons interchange between PEP and pyruvate (PYR) in these ptsHIcrr(-) strains by deleting the pykA, pykF, and ppsA genes. The PB11 pykAF(-) ppsA(-) strain exhibited no growth on glucose or acetate alone, but it was viable when both substrates were consumed simultaneously. In contrast, the PB12 pykAF(-) ppsA(-) strain displayed a low growth rate on glucose or acetate alone, but in the mixture, growth was significantly improved. RT-qPCR expression analysis of PB11 pykAF(-) ppsA(-) growing with both carbon sources showed a downregulation of all central metabolic pathways compared with its parental PB11 strain. Under the same conditions, transcription of most of the genes in PB12 pykAF(-) ppsA(-) did not change, and few like aceBAK, sfcA, and poxB were overexpressed compared with PB12. We explored the aromatics production capabilities of both ptsHIcrr(-) pykAF(-) ppsA(-) strains and the engineered PB12 pykAF(-) ppsA(-) tyrR(-) pheA(ev2+) /pJLBaroG(fbr) tktA enhanced the yield of aromatic compounds when coutilizing glucose and acetate compared with the control strain PB12 tyrR(-) pheA(ev2+) /pJLBaroG(fbr) tktA.
منابع مشابه
Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses.
In a series of previous reports it was established by implementing metabolic flux, NMR/MS, and Northern blot analysis that the glyoxylate shunt, the TCA cycle, and acetate uptake by acetyl-CoA synthetase are more active in Escherichia coli BL21 than in Escherichia coli JM109. These differences were accepted as the reason for the differences in the glucose metabolism and acetate excretion of the...
متن کاملConsequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli
BACKGROUND In Escherichia coli phosphoenolpyruvate (PEP) is a key central metabolism intermediate that participates in glucose transport, as precursor in several biosynthetic pathways and it is involved in allosteric regulation of glycolytic enzymes. In this work we generated W3110 derivative strains that lack the main PEP consumers PEP:sugar phosphotransferase system (PTS-) and pyruvate kinase...
متن کاملMetabolic analysis of Escherichia coli in the presence and absence of the carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase.
Fermentation patterns of Escherichia coli with and without the phosphoenolpyruvate carboxylase (PPC) and pyruvate carboxylase (PYC) enzymes were compared under anaerobic conditions with glucose as a carbon source. Time profiles of glucose and fermentation product concentrations were determined and used to calculate metabolic fluxes through central carbon pathways during exponential cell growth....
متن کاملBy-product formation during exposure of respiring Saccharomyces cerevisiae cultures to excess glucose is not caused by a limited capacity of pyruvate carboxylase.
Upon exposure to excess glucose, respiring cultures of Saccharomyces cerevisiae produce substantial amounts of ethanol and acetate. A possible role of a limited anaplerotic capacity in this process was investigated by overexpressing pyruvate carboxylase and by replacing it with a heterologous enzyme (Escherichia coli phosphoenolpyruvate carboxylase). Compared to the wild-type, neither the pyruv...
متن کاملEscherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.
Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spon...
متن کامل